
DW vs OLTP Performance Optimization in
the Cloud on PostgreSQL (A Case Study)

Dakota Joiner
Computer Science
Okanagan College
Kelowna, Canada

0000-0002-3094-0015

Mathias Clement
Computer Science
Okanagan College
Kelowna, Canada

0000-0001-8206-307X

Shek (Tom) Chan
Mathematics and Statistics

Langara College
Vancouver, Canada

0000-0001-6143-7175

Keegan Pereira
Computer Science
Okanagan College
Kelowna, Canada

0000-0002-2893-3406

Albert Wong
Mathematics and Statistics

Langara College
Vancouver, Canada

0000-0002-0669-4352

Youry Khmelevsky
Computer Science
Okanagan College
Kelowna, Canada

0000-0002-6837-3490

Joe Mahony
Research and Development

Harris SmartWorks
Ottawa, Canada

JMahony@harriscomputer.com

Michael Ferri
Research and Development

Harris SmartWorks
Ottawa, Canada

mferri@harriscomputer.com

Abstract—This case study shows the performance
issues and solutions for a data warehouse (DW) per-
forming well to serve industrial partners in improving
customer data retrieval performance. An online trans-
action processing (OLTP) relational database and a DW
were deployed in PostgreSQL and tested against each
other. Several test cases were carried out with the DW,
including indexing and creating pre-aggregated tables,
all guided by in-depth analysis of EXPLAIN plans.
Queries and DW design were continually improved
throughout testing to ensure that the OLTP and DW
were compared equally. Seven queries (requested by the
industrial client) were used to thoroughly test different
performance aspects concerning client feedback and the
complexity of requests for all areas the DW might cover.
On average, the data warehouse showed a one to three
magnitudes increase in query execution performance,
with the highest calibre results coming in at 2,493 times
faster than the OLTP. All test cases showed an increase
in performance over the OLTP. Additionally, the data
contained in the DW took up 24% less storage space than



is frequently utilized in customer queries [2], [3].
Other approaches include parallel processing across
an integrated cluster of computers [4]. Clearly, there
exist many different solutions to increase efficiency.
Developing the most effective solution is therefore a
matter of testing on specific systems to determine what
meets the outlined needs for a given client.

When running an SQL query, there is often a
piece of software called the Query Optimizer that
chooses the most efficient method for data retrieval.
Understanding how the optimizer chooses to access
specific data can inform database design decisions [5].
The EXPLAIN PLAN is a tool that displays the
choices made by the Query Optimizer for a given
SQL statement with specific reference to information
such as where loops are carried out, how many rows
are accessed, how many results are saved, and how
many results are thrown away, etc. [6]. Utilizing and
understanding an EXPLAIN PLAN can help in pin-
pointing inefficiencies and identifying problem areas
that can be fine-tuned to reduce number of joins,
number of row accesses, and number of results thrown
away. The EXPLAIN PLAN alone cannot provide the
necessary information to validate the efficiency of a
design schema or query, but rather is a powerful tool
to be included as part of a testing suite.

As part of an attempt to facilitate speed of retrieval,
many DBMSs (including PostgreSQL, the DBMS
used in this case study) will cache results in RAM
for easy retrieval at a later time [5]. While useful for
practical applications, caching carried out in a testing
environment can lead to biased performance results
and reporting of retrieval time. Consider a situation
where a test query is run ten times consecutively. After
the first run, the DBMS may cache results and the
following nine tests will show a considerably shorter
retrieval time. One might believe data retrieval to
be quite fast when looking at the average time per
execution. While it might seem reasonable at first
glance and a DB designer would react positively to
a significant decrease in query run time, they must





shown in Table III and Figure 2. One might worry
about the additional space requirements to include
several extra tables derived from an already large
fact table, but these additions still result in storage
savings compared to the OLTP database while pro-
viding significant reduction in query run time. The
pre-aggregated tables are considerably smaller (total
11 GB), bringing the total storage size of the data
warehouse to 100 GB which is less than that of the
original OLTP database.

Fig. 1. Storage comparison of OLTP and star schema. OLTP: table
size ≈ 179 GB, index size ≈ 239 GB. DW: table size ≈ 137 GB,
index size ≈ 170 GB, pre-aggregated tables ≈ 11 GB.

The query run times are significantly shorter in the
pre-aggregated tables compared to the OLTP and non-
aggregated table. The difference in query run time can
likely be attributed to the smaller size of each table.
Pre-aggregating the results cuts down computational
time significantly as results are only retrieved and do
not have to be aggregated at query run time each time
the query is run.

A. Testing Framework
To faciliate testing, a dedicated virtual machine

running Alma Linux version 8.5 and PostgreSQL
version 10.17 was created. A test database containing
real customer data, which will remain obfuscated, was
loaded into the database. The virtual machine had
64 GB of dedicated RAM and 1.6 TB of storage
total. An Extract/Load/Transform (ELT) process was
carried out to extract the data from the provided OLTP
database to fill out the data warehouse. In the case
of the pre-aggregated tables, functions were designed
to aggregate data based on specific conditions, those
being daily or monthly, location class, and meter type,
as in Listing 1.
SELECT read_month, SUM(total_usage)
FROM star1.monthly_usage
WHERE to_date(read_month, 'yyyy-mm') >=

to_date(x, 'yyyy-mm')
AND to_date(read_month, 'yyyy-mm') <

to_date(y, 'yyyy-mm')

...

Listing 1. An extracted snippet of the ELT process for a monthly
data aggregation

To carry out the testing and comparisons, automated
shell scripts were written to ensure repeatability and
serializability. The general outline of the script, in
order of operation, is to clear the database cache, begin
a timing function, generate an EXPLAIN plan, carry
out a specified number of timed tests, clear the cache
between each query, finish timing the total program



TABLE III
A



Fig. 2. Run time comparisons of testing queries on the OLTP and DW on a logarithmic scale. The letter designations correspond to
different pre-aggregation type for each query. a - monthly, b - daily, c - location class, d - meter type. The performance improvements of
the pre-aggregated data warehouse are plainly seen here.

=8 width=15) (actual time=6.197..140.461
rows=13 loops=3)

Listing 3. Snippets of the EXPLAIN plan for query 2 on the OLTP
(top) and query 2 on the monthly pre-aggregated table (bottom).

V. D ISCUSSION

Performance optimizations in databases have been
heavily studied, though there exists little published
research speci�cally testing the comparison of data
warehouses and OLTP databases in the cloud. Data
warehouses are often used for business decision mak-
ing, but the direction taken here allows for transaction-
like retrieval of aggregated business data at a level
unachievable with an OLTP. The pre-aggregation of
tables in a data warehousing setting speci�cally de-
signed to enhance customer experience has resulted in
a signicant reduction in query time for data retrieval.
In addition to pre-aggregating relevant time-based
data, other tables were experimentally pre-aggregated
for further testing. Additional tables were created
aggregating by location class (an operational classi-
�cation) and separately by meter type. Compilation

of results in this way shows further promising results
in reducing query execution time.

Future target areas to further improve ef�ciency
include the introduction of bitmap indexes, partition-
ing, and parallelization. The idea is to integrate all
ideas together into the most effective version of the
system. Firstly, bitmap indexing can further increase
the speed of retrieval by mapping indexes in a bit map
to a similar group of rows instead of by single rows.
Congruently, parallelizing the execution of queries
and employing bitmap indexes at the same time is
likely to lead to further reductions in execution time.
Parallel execution can break up large complex jobs
into several smaller, simpler jobs and then aggregate
the results of each of those to produce the �nal desired
results [35]. This situation seems ideal when, in the
tested cases here, there are billions of records to
access and aggregate. Finally, increased degrees of
partitioning may also be useful.



VI. FUTURE WORK

Performance optimization will be further enhanced
with the implementation of the aforementioned tar-
gets: partitioning, parallelization, and bitmap indexing
with rigorous performance testing of both systems in
the cloud. The automated scripting for retrieval of
materialized views is considered as a customer-facing
solution to decrease space usage as not every query
needs to be represented as a pre-aggregated table.
Once the data warehouse is in an acceptable state, it
will be paired with the machine learning model under
development as an integrated environment for queries
and information retrieval using English commands.

VII. C ONCLUSION

Testing of query execution time on an OLTP
database versus a data warehouse was performed with
PostgreSQL. Complex queries were designed to not
only simulate “customer-like” data retrieval, but to
put the data warehouse under strain and test the full
capabilities in all expected use areas. Initial perfor-
mance between the OLTP database and the DW was
approximately at parity, but introduction of indexes
and pre-aggregated tables resulted in a vast decrease
in run time. The decision to create speci�cally pre-
aggregated tables was driven by analysis of detailed
EXPLAIN plans and related performance require-
ments. All queries showed an increase in performance
on the pre-aggregated tables in the range of one to
three orders of magnitude faster than the parent OLTP
database, with all producing results in sub ten-second



[22] Y. Khmelevsky, X. Li, and S. Madnick, “Software develop-


